DataDriven Training: Enhancing Athletic Performance through Wearable Technologies and Artificial Intelligence
Veri-Odaklı Antrenman: Giyilebilir Teknolojiler ve Yapay Zekâ ile Sporcu Performansının Yükseltilmesi
Tunay DİLİCAN1
1Bursa Uludağ Universtiy, /Orcid ID: 0000-0003-4686-6849 e-posta: tunaydilican86@hotmail.com
Doi: https://doi.org/10.5281/zenodo.17583376
https://www.ijoss.org/Archive/issue2-volume3/ijoss-Volume2-issue3-33.pdf
Received / Gönderim: 08.08.2025 Accepted / Kabul: 15.09.2025 Published / Yayın: 24.10.2025
Abstract
This review examines the increasingly prominent concept of data-driven training in contemporary sports science, discussing the role of wearable technologies and artificial intelligence in enhancing athletic performance. Based on the existing body of published research, the literature indicates substantial advancements in performance assessment, load management, and injury prevention. The large datasets generated through wearable devices can be analysed through AI algorithms, enabling the development of highly individualised training models. However, persistent challenges—such as data security, ethical standards, algorithmic bias, and financial accessibility—continue to limit the widespread adoption of these technologies. The review emphasises the need for future systems to be developed in a more transparent, accessible, and ethically grounded manner. Ultimately, data-driven approaches signal a new era in modern sport, one that extends beyond performance optimisation to encompass sustainability and a more human-centred model of athletic training.
Keywords: Artificial intelligence, Performance, Training
Öz
Bu derleme, son yıllarda spor biliminde giderek önem kazanan veri-odaklı antrenman anlayışını incelemekte; giyilebilir teknolojiler ve yapay zekâ uygulamalarının sporcu performansının geliştirilmesindeki rolünü tartışmaktadır. Yayımlanmış çalışmalar temel alınarak, literatür taraması sonucunda performans ölçümü, yük yönetimi ve sakatlık önleme konularında önemli gelişmeler olduğu görülmüştür. Giyilebilir cihazlar aracılığıyla elde edilen büyük veri setleri, yapay zekâ algoritmalarıyla analiz edilerek bireyselleştirilmiş antrenman modellerinin oluşturulmasına imkân tanımaktadır. Bununla birlikte, veri güvenliği, etik standartlar, algoritmik önyargı ve maliyet gibi sorunlar, teknolojilerin yaygın kullanımını sınırlamaktadır. Çalışma, gelecekte bu teknolojilerin daha şeffaf, erişilebilir ve etik temellere dayalı biçimde geliştirilmesinin gerekliliğini vurgulamaktadır. Sonuç olarak, veri odaklı yaklaşımlar, modern sporun sadece performans optimizasyonu değil, aynı zamanda sürdürülebilirlik ve insan merkezli antrenman anlayışı açısından da yeni bir dönemi temsil etmektedir.
Anahtar Kelimeler: Yapay zeka, Performans, Antrenman
APA 7 Citation
Dilican, T. (2025). Data-Driven Training: Enhancing Athletic Performance through Wearable Technologies and Artificial Intelligence. International Journal of Health, Exercise, and Sport Sciences, 2(3), 407–418.
https://www.ijoss.org/Archive/issue2-volume3/ijoss-Volume2-issue3-33.pdf
https://doi.org/10.5281/zenodo.17583376
References / Kaynaklar
- Altukhi, Z. M., Pradhan, S., & Aljohani, N. (2025). A Systematic Literature Review of the Latest Advancements in XAI. Technologies, 13(3), 93.
- Alzahrani, A., & Ullah, A. (2024). Advanced biomechanical analytics: Wearable technologies for precision health monitoring in sports performance. Digital Health, 10, 20552076241256745.
- An, R. (2025). Artificial intelligence in health and sport sciences: Promise, progress, and prudence. Journal of Sport and Health Science, 14, 101054.
- Baldassarri, S., García de Quirós, J., Beltrán, J. R., & Álvarez, P. (2023). Wearables and machine learning for improving runners’ motivation from an affective perspective. Sensors, 23(3), 1608.
- Carron, M. A., & Dalbo, V. J. (2025). Quantifying Long-Term Adaptations in Performance Variables in Adolescent Athletes: A 1.5 Year Longitudinal Training Study Utilising a Standardised, Progressive, Blocked Linear Periodisation Resistance Training Program. Sports, 13(6), 164.
- Doherty, C., Baldwin, M., Keogh, A., Caulfield, B., & Argent, R. (2024). Keeping pace with wearables: a living umbrella review of systematic reviews evaluating the accuracy of consumer wearable technologies in health measurement. Sports Medicine, 54(11), 2907-2926.
- Latino, F., & Tafuri, F. (2024). Wearable sensors and the evaluation of physiological performance in elite field hockey players. Sports, 12(5), 124.
- Li, J., & Washington, P. (2024). A comparison of personalized and generalized approaches to emotion recognition using consumer wearable devices: Machine learning study. JMIR AI, 3(1), e52171.
- Migliaccio, G. M., Padulo, J., & Russo, L. (2024). The impact of wearable technologies on marginal gains in sports performance: An integrative overview on advances in sports, exercise, and health. Applied Sciences, 14(15), 6649.
- Musat, C. L., Mereuta, C., Nechita, A., Tutunaru, D., Voipan, A. E., Voipan, D., … & Nechita, L. C. (2024). Diagnostic applications of AI in sports: a comprehensive review of injury risk prediction methods. Diagnostics, 14(22), 2516.
- Olsen, R. J., Hasan, S. S., Woo, J. J., Nawabi, D. H., & Ramkumar, P. N. (2025). The fundamentals and applications of wearable sensor devices in sports medicine: a scoping review. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 41(2), 473-492.
- Olyanasab, A., & Annabestani, M. (2024). Leveraging machine learning for personalized wearable biomedical devices: a review. Journal of personalized medicine, 14(2), 203.
- Radanliev, P. (2025). Privacy, ethics, transparency, and accountability in AI systems for wearable devices. Frontiers in Digital Health, 7, 1431246.
- Rebelo, A., Martinho, D. V., Valente-dos-Santos, J., Coelho-e-Silva, M. J., & Teixeira, D. S. (2023). From data to action: a scoping review of wearable technologies and biomechanical assessments informing injury prevention strategies in sport. BMC sports science, medicine and rehabilitation, 15(1), 169.
- Reis, F. J., Alaiti, R. K., Vallio, C. S., & Hespanhol, L. (2024). Artificial intelligence and Machine Learning approaches in sports: Concepts, applications, challenges, and future perspectives. Brazilian journal of physical therapy, 28(3), 101083.
- Sampedro, A. C. (2023). The ethics of AI in sport. Taking athletes’ rights and wellbeing seriously. Final report, The IOC Olympic Studies Centre.
- Segura Anaya, L. H., Alsadoon, A., Costadopoulos, N., & Prasad, P. W. C. (2018). Ethical implications of user perceptions of wearable devices. Science and engineering ethics, 24(1), 1-28.
- Valiyev, K., & Mahmudova, S. (2025). The challenges and risks of artificial intelligence and their impact on society. ScienceRise, (1), 71-77.
- Zhou, D., Keogh, J. W., Ma, Y., Tong, R. K., Khan, A. R., & Jennings, N. R. (2025). Artificial intelligence in sport: A narrative review of applications, challenges and future trends. Journal of Sports Sciences, 1-16.
